Infrastructure and methodologies for the justification of nuclear power programmes
Related titles:

Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
(ISBN 978-1-84569-542-2)
The long term safety of spent nuclear fuel and radioactive waste materials must be assured without active human oversight, based on the requirement that we do not pass the burden of nuclear waste onto future generations. Geological disposal systems and technology, utilising both natural geological barriers and engineered barrier systems, have been developed to isolate nuclear wastes from the human environment. This book critically reviews state-of-the-art technologies, scientific methods and engineering practices directly related to the design, operation and safety of geological repositories.

Handbook of advanced radioactive waste conditioning technologies
(ISBN 978-1-84569-626-9)
Radioactive wastes are generated from a wide range of sources presenting a variety of challenges in dealing with a diverse set of radionuclides of varying concentrations. Conditioning technologies are essential for the encapsulation and immobilisation of these radioactive wastes, forming the initial engineered barrier required for their transportation, storage and disposal. The need to ensure the long term performance of radioactive waste forms is a key driver in the development of advanced conditioning technologies. This book provides a comprehensive and systematic reference on the various options available and as well as those under development for the treatment and immobilisation of radioactive wastes.

Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Advanced separation technology is key to closing the nuclear fuel cycle and relieving future generations from the burden of radioactive waste produced by the nuclear power industry. Nuclear fuel reprocessing allows for reuse of useful fuel components for further power generation, while the separation of actinides, lanthanides and other fission products means that residual radioactive waste can be minimised. The future of the nuclear industry relies on the advancement of this technology to ensure environmental protection, criticality-safety and non-proliferation. This book provides a comprehensive and timely reference on the fundamental issues of radioactive materials separations, with critical reviews of established and emerging techniques.

Details of these and other Woodhead Publishing books can be obtained by:
- visiting our web site at www.woodheadpublishing.com
- contacting Customer Services (e-mail: sales@woodheadpublishing.com; fax: +44 (0) 1223 832819; tel.: +44 (0) 1223 499140 ext. 130; address: Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ, UK)

If you would like to receive information on forthcoming titles, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail: francis.dodds@woodheadpublishing.com). Please confirm which subject areas you are interested in.
Infrastructure and methodologies for the justification of nuclear power programmes

Edited by
Agustín Alonso

© Woodhead Publishing Limited, 2011
Contents

Contributor contact details xvi
Woodhead Publishing Series in Energy xxiii
Foreword xxvii
J. B. RITCH, World Nuclear Association, London, UK and World Nuclear University, London, UK xxxiii
Preface xvii

1 Overview of infrastructure and methodologies for the justification of nuclear power programmes 1
 A. ALONSO, Universidad Politécnica de Madrid, Spain
1.1 The past, current and future phases in the development of nuclear power 1
1.2 The main factors shaping the deployment of nuclear power 5
1.3 The bases for the development of nuclear power 24
1.4 Conclusion 31
1.5 References 32

Part I Infrastructure of nuclear power programmes 35

2 The lifecycle of a nuclear power plant 37
 A. CARNINO, Consultant in Safety, Management of Safety, Safety Culture and Security, France
2.1 Introduction 37
2.2 Overview of the complete nuclear fuel cycle 37
2.3 Overview of the nuclear power plant life cycle 40
2.4 Requirements for new nuclear power plants 41
2.5 Sources of further information and advice 50
2.6 References 53

© Woodhead Publishing Limited, 2011
Contents

1 3 The role of government in establishing the framework for nuclear power programmes

D. F. TORGERSON, Atomic Energy of Canada Ltd, Canada

2 3.1 Introduction 55

3 3.2 Role of government in the justification process 59

4 3.3 International requirements 62

5 3.4 Knowledge management 75

6 3.5 Regulatory requirements 81

7 3.6 New entrants 85

8 3.7 Future trends 87

9 3.8 Sources of further information and advice 89

10 3.9 References 90

11 4 Regulatory requirements and practices in nuclear power programmes

G. CARUSO, International Atomic Energy Agency (IAEA), Austria

12 4.1 Introduction 94

13 4.2 Basic characteristics of regulatory organizations 95

14 4.3 Creation, authority, responsibilities and competence of the regulatory body 99

15 4.4 Development, functions and management system of the regulatory body 101

16 4.5 Development of the regulatory framework and approaches 104

17 4.6 The regulatory function: development of a regulatory pyramid 107

18 4.7 Development of the licensing process and major regulatory activities during the licensing process 111

19 4.8 The compliance function: verification and oversight during construction and operation 117

20 4.9 The enforcement function 120

21 4.10 Regulatory transparency and openness, and the relationship with the operating organization and other stakeholders 121

22 4.11 Regulatory support and research 122

23 4.12 Sources of further information and advice 124

24 4.13 References 125

25 5 Responsibilities of the nuclear operator in nuclear power programmes

J. MOARES, Independent Consultant, UK

26 5.1 Introduction 126

27 5.2 The responsibilities of the nuclear operator 127
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3 The means to enact responsibilities and enhance leadership effectiveness</td>
<td>128</td>
</tr>
<tr>
<td>5.4 Responsibilities of the operator in the lifecycle of a nuclear power plant</td>
<td>132</td>
</tr>
<tr>
<td>5.5 Importance of organisations for safe operation</td>
<td>134</td>
</tr>
<tr>
<td>5.6 Building and maintaining an operations organisation</td>
<td>135</td>
</tr>
<tr>
<td>5.7 Monitoring and evaluating organisational effectiveness</td>
<td>138</td>
</tr>
<tr>
<td>5.8 Maintaining organisations</td>
<td>140</td>
</tr>
<tr>
<td>5.9 Basis for safe operation</td>
<td>142</td>
</tr>
<tr>
<td>5.10 Engineering support and design authority</td>
<td>145</td>
</tr>
<tr>
<td>5.11 References</td>
<td>145</td>
</tr>
<tr>
<td>6 The need for human resources in nuclear power programmes</td>
<td>147</td>
</tr>
<tr>
<td>F. J. SÁNCHEZ, Tecnatom, Spain</td>
<td>148</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>147</td>
</tr>
<tr>
<td>6.2 Human resource requirements of the nuclear stakeholders</td>
<td>149</td>
</tr>
<tr>
<td>6.3 High-level nuclear education programmes</td>
<td>159</td>
</tr>
<tr>
<td>6.4 Changing specialization requirements in the nuclear power plant lifecycle</td>
<td>166</td>
</tr>
<tr>
<td>6.5 International experience</td>
<td>175</td>
</tr>
<tr>
<td>6.6 Initial and sustained training programmes</td>
<td>180</td>
</tr>
<tr>
<td>6.7 Sources of further information and advice</td>
<td>186</td>
</tr>
<tr>
<td>6.8 References</td>
<td>187</td>
</tr>
<tr>
<td>7 National technical capability development in nuclear power programmes</td>
<td>189</td>
</tr>
<tr>
<td>S. K. SHARMA, formerly of Atomic Energy Regulatory Board of India, India</td>
<td>190</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>189</td>
</tr>
<tr>
<td>7.2 Establishing the foundation for national technical development</td>
<td>190</td>
</tr>
<tr>
<td>7.3 Understanding the nuclear power plant (NPP) design</td>
<td>192</td>
</tr>
<tr>
<td>7.4 National participation in siting</td>
<td>194</td>
</tr>
<tr>
<td>7.5 National participation in design, equipment manufacture and construction</td>
<td>196</td>
</tr>
<tr>
<td>7.6 Plant commissioning</td>
<td>199</td>
</tr>
<tr>
<td>7.7 Plant operation</td>
<td>201</td>
</tr>
<tr>
<td>7.8 Longer-term operation and management</td>
<td>213</td>
</tr>
<tr>
<td>7.9 Decommissioning</td>
<td>217</td>
</tr>
<tr>
<td>7.10 Sources of further information and advice</td>
<td>218</td>
</tr>
<tr>
<td>7.11 Acknowledgements</td>
<td>219</td>
</tr>
</tbody>
</table>
Part II Justification of nuclear power programmes 221

8 Application of the justification principle to nuclear power development 223
 A. Alonso, Universidad Politécnica de Madrid, Spain
 8.1 Introduction 223
 8.2 The ethics of the justification principle 224
 8.3 The justification process 227
 8.4 The terms of the justification equation 229
 8.5 The benefits of nuclear energy 230
 8.6 Risks and detriments of nuclear energy 241
 8.7 Conclusions 258
 8.8 References 258

9 Available and advanced nuclear technologies for nuclear power programs 261
 S. Bilbao y Leon, Virginia Commonwealth University, USA and J. H. Choi, J. Cleveland, I. Khams, A. Rao, A. Stanculescu, H. Subki and B. Tyobeka, International Atomic Energy Agency (IAEA), Austria
 9.1 Introduction 261
 9.2 Classification of advanced nuclear reactors 261
 9.3 Key advances in technology 264
 9.4 Advanced nuclear reactor designs 268
 9.5 Non-electrical applications 285
 9.6 Sources of further information and advice 292
 9.7 References 293

10 Nuclear safety in nuclear power programs 294
 D. A. Meneley, Atomic Energy of Canada Ltd, Canada
 10.1 Introduction 294
 10.2 Basic safety principles 296
 10.3 Development and application of deterministic safety assessment 307
 10.4 Development and application of probabilistic safety assessment (PSA) 314
 10.5 Risk-informed decision-making processes 317
 10.6 Impact of past accidents on future safety improvement 321
 10.7 Evolution of major safety performance indices 325
 10.8 Sources of further information and advice 327
 10.9 References 329

© Woodhead Publishing Limited, 2011
Contents

1. **Spent fuel and radioactive waste management in nuclear power programmes** 465
 H. FORSSTRÖM, formerly of International Atomic Energy Agency (IAEA) Division of Nuclear Fuel Cycle and Waste Technology, Austria

2. 14.1 Introduction 465
3. 14.2 Policies and strategies for management of spent fuel and radioactive waste 470
4. 14.3 Radioactive waste from nuclear power production 476
5. 14.4 Management systems for spent nuclear fuel 482
6. 14.5 Management of low- and intermediate-level waste (LLW and ILW) 493
7. 14.6 Conclusions 500
8. 14.7 References 501

15. **The economics of nuclear power: past, present and future aspects** 502
 H.-H. ROGNER, International Atomic Energy Agency (IAEA), Austria

16. 15.1 Introduction 502
17. 15.2 Economics today and tomorrow 511
18. 15.3 Levelized cost of electricity generation 536
19. 15.4 Risks and uncertainties 540
20. 15.5 Conclusions 544
21. 15.6 References 545

16. **Social impacts and public perception of nuclear power** 549
 F. BAZILE, CEA, France

27. 16.1 Introduction 549
28. 16.2 Social impacts at both national and local levels 550
29. 16.3 Public perception of nuclear power 557
30. 16.4 Conclusion 565
31. 16.5 References and further reading 565

17. **Environmental impacts and assessment in nuclear power programmes** 567
 I. SALTER, P. ROBINSON, M. FREEMAN and J. JAGASIA, Burges Salmon LLP, UK

36. 17.1 Introduction 567
37. 17.2 Environmental protection 568
38. 17.3 Environmental Impact Assessment (EIA) 574

© Woodhead Publishing Limited, 2011
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4 Land planning for new nuclear</td>
<td>580</td>
</tr>
<tr>
<td>17.5 Key controls on environmental impacts</td>
<td>588</td>
</tr>
<tr>
<td>17.6 Overlap with other regulatory controls</td>
<td>592</td>
</tr>
<tr>
<td>17.7 Conclusions</td>
<td>593</td>
</tr>
<tr>
<td>17.8 Future trends</td>
<td>594</td>
</tr>
<tr>
<td>17.9 References</td>
<td>594</td>
</tr>
</tbody>
</table>

Part III Development of nuclear power programmes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Site selection and evaluation for nuclear power plants (NPPs)</td>
<td>599</td>
</tr>
<tr>
<td>A. Alonso, Universidad Politécnica de Madrid, Spain</td>
<td></td>
</tr>
<tr>
<td>18.1 Introduction</td>
<td>599</td>
</tr>
<tr>
<td>18.2 Schematic approach to site selection</td>
<td>601</td>
</tr>
<tr>
<td>18.3 Basic safety principles applicable to nuclear power plant (NPP) siting</td>
<td>603</td>
</tr>
<tr>
<td>18.4 International Atomic Energy Agency (IAEA) requirements and safety guides on nuclear power plant siting</td>
<td>605</td>
</tr>
<tr>
<td>18.5 Consideration of the feasibility of an emergency plan</td>
<td>614</td>
</tr>
<tr>
<td>18.6 Demographic requirements and site parameters developed and applied by the United States Nuclear Regulatory Commission</td>
<td>615</td>
</tr>
<tr>
<td>18.7 References</td>
<td>619</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 Bid invitation in nuclear power plant procurement</td>
<td>621</td>
</tr>
<tr>
<td>A. González, Empresarios Agrupados, A.I.E., Spain</td>
<td></td>
</tr>
<tr>
<td>19.1 Introduction</td>
<td>621</td>
</tr>
<tr>
<td>19.2 Contracting approach and bid invitation specifications</td>
<td>622</td>
</tr>
<tr>
<td>19.3 Basis for preparation of the bid invitation specifications</td>
<td>626</td>
</tr>
<tr>
<td>19.4 Purpose, structure and contents</td>
<td>629</td>
</tr>
<tr>
<td>19.5 Letter of invitation</td>
<td>630</td>
</tr>
<tr>
<td>19.6 Instructions to bidders</td>
<td>631</td>
</tr>
<tr>
<td>19.7 Scope of supply</td>
<td>633</td>
</tr>
<tr>
<td>19.8 Technical requirements</td>
<td>638</td>
</tr>
<tr>
<td>19.9 Project implementation</td>
<td>642</td>
</tr>
<tr>
<td>19.10 Technical data sheets</td>
<td>646</td>
</tr>
<tr>
<td>19.11 Draft contract</td>
<td>647</td>
</tr>
<tr>
<td>19.12 Commercial conditions</td>
<td>650</td>
</tr>
<tr>
<td>19.13 Financing requirements</td>
<td>653</td>
</tr>
<tr>
<td>19.14 References and further reading</td>
<td>655</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
Contents

1 Licensing for nuclear power plant siting, construction and operation
A. ALONSO, Universidad Politécnica de Madrid, Spain, S. K. SHARMA, Atomic Energy Regulatory Board, India and D. F. TORGERSON, Atomic Energy of Canada Ltd, Canada

20.1 Introduction 656
20.2 The need for licensing 658
20.3 Licensing application and supporting technical documents 663
20.4 Safety review of licensing applications and license requirements 672
20.5 Licensee activities during design, construction, commissioning, operation and decommissioning 679
20.6 Regulatory compliance during design, construction, commissioning and operation 690
20.7 Licensing of a country’s first nuclear power plant 693
20.8 Acknowledgements 696
20.9 References 696
20.10 Appendix: Examples of licensing systems 698

21 Quality assurance during design, construction and operation of nuclear power plants
R. GASCA, Asociación Nuclear Ascó, Spain

21.1 Introduction 705
21.2 Definitions 706
21.3 Quality assurance criteria 707
21.4 Quality assurance during design 709
21.5 Quality assurance during construction 714
21.6 Quality assurance during commissioning 718
21.7 Quality assurance during operation 721
21.8 Assessment 729
21.9 Human resources 733
21.10 Sources of further information and advice 735
21.11 References 739
21.12 Appendix: list of abbreviations and acronyms 739

22 Commissioning of nuclear power plants (NNPs)
E. GRAUF, se-engineering GmbH, Germany

22.1 Introduction 741
22.2 Codes, standards and other requirements for the commissioning of nuclear power plants (NPPs) 742
22.3 Commissioning programme and stages of commissioning 743
22.4 Pre-operational tests 744
22.5 Nuclear commissioning 745

© Woodhead Publishing Limited, 2011
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.6 Roles and responsibilities during commissioning</td>
<td>752</td>
</tr>
<tr>
<td>22.7 Commissioning organization and management</td>
<td>755</td>
</tr>
<tr>
<td>22.8 Commissioning procedures</td>
<td>763</td>
</tr>
<tr>
<td>22.9 Test procedures</td>
<td>766</td>
</tr>
<tr>
<td>22.10 Qualification requirements for commissioning personnel and other human factors</td>
<td>767</td>
</tr>
<tr>
<td>22.11 Safety management and development of a safety culture</td>
<td>769</td>
</tr>
<tr>
<td>22.12 Recording and analysis of tests</td>
<td>769</td>
</tr>
<tr>
<td>22.13 Documentation</td>
<td>770</td>
</tr>
<tr>
<td>22.14 International experience</td>
<td>771</td>
</tr>
<tr>
<td>22.15 References</td>
<td>772</td>
</tr>
</tbody>
</table>

| 23 Operational safety of nuclear power plants | 773 |
| M. LiPÁR, International Atomic Energy Agency (IAEA), Austria | 14 |

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.1 Introduction</td>
<td>773</td>
</tr>
<tr>
<td>23.2 International Atomic Energy Agency (IAEA) requirements for nuclear power plant (NPP) operation</td>
<td>774</td>
</tr>
<tr>
<td>23.3 Management, organization and administration of nuclear power plants (NPPs)</td>
<td>782</td>
</tr>
<tr>
<td>23.4 Training and qualification</td>
<td>788</td>
</tr>
<tr>
<td>23.5 Operations</td>
<td>794</td>
</tr>
<tr>
<td>23.6 Maintenance</td>
<td>800</td>
</tr>
<tr>
<td>23.7 Technical support</td>
<td>805</td>
</tr>
<tr>
<td>23.8 Operational experience feedback (OEF)</td>
<td>810</td>
</tr>
<tr>
<td>23.9 Radiation protection</td>
<td>815</td>
</tr>
<tr>
<td>23.10 Chemistry</td>
<td>819</td>
</tr>
<tr>
<td>23.11 Emergency planning and preparedness</td>
<td>821</td>
</tr>
<tr>
<td>23.12 Operational Safety Review Team (OSART)</td>
<td>825</td>
</tr>
<tr>
<td>23.13 Sources of further information and advice</td>
<td>826</td>
</tr>
<tr>
<td>23.14 References</td>
<td>829</td>
</tr>
</tbody>
</table>

| 24 Decommissioning of nuclear power plants (NPPs) | 831 |
| T. S. LaGuardia, LaGuardia & Associates, LLC, USA | 33 |

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.1 Introduction</td>
<td>831</td>
</tr>
<tr>
<td>24.2 Brief history of the development of decommissioning</td>
<td>832</td>
</tr>
<tr>
<td>24.3 Development of decommissioning cost estimating methodologies</td>
<td>840</td>
</tr>
<tr>
<td>24.4 Development of long-term planning for decommissioning</td>
<td>847</td>
</tr>
<tr>
<td>24.5 Decommissioning technologies and research and development</td>
<td>848</td>
</tr>
<tr>
<td>24.6 Overview of the decommissioning phase of a nuclear power plant (NPP) lifecycle</td>
<td>863</td>
</tr>
</tbody>
</table>

© Woodhead Publishing Limited, 2011
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.7 Management of decommissioning waste and the recycling of materials 874</td>
</tr>
<tr>
<td>2</td>
<td>24.8 International experience 878</td>
</tr>
<tr>
<td>3</td>
<td>24.9 Sources of further information and advice 881</td>
</tr>
<tr>
<td>4</td>
<td>24.10 References 887</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Appendices 889</td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Appendix 1: The justification test for new nuclear power development: United Kingdom experience 891</td>
</tr>
<tr>
<td>13</td>
<td>W. E. A. WILSON, Burges Salmon LLP, UK</td>
</tr>
<tr>
<td>14</td>
<td>A1.1 International Commission on Radiological Protection (ICRP) and origins 891</td>
</tr>
<tr>
<td>15</td>
<td>A1.2 European Atomic Energy Community (Euratom) legislation and European Court of Justice and UK case law on justification 894</td>
</tr>
<tr>
<td>16</td>
<td>A1.3 UK regulations 897</td>
</tr>
<tr>
<td>17</td>
<td>A1.4 Application of justification test to nuclear new build proposals 898</td>
</tr>
<tr>
<td>18</td>
<td>A1.5 Conclusions 903</td>
</tr>
<tr>
<td>19</td>
<td>A1.6 References 905</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Appendix 2: Nuclear safety culture: management, assessment and improvement of individual behaviour 907</td>
</tr>
<tr>
<td>25</td>
<td>A. CARNINO, Consultant in Safety, Management of Safety, Safety Culture and Security, France</td>
</tr>
<tr>
<td>26</td>
<td>A2.1 Introduction 907</td>
</tr>
<tr>
<td>27</td>
<td>A2.2 Definitions 908</td>
</tr>
<tr>
<td>28</td>
<td>A2.3 The organization 909</td>
</tr>
<tr>
<td>29</td>
<td>A2.4 Assessing the stage of development of safety culture 912</td>
</tr>
<tr>
<td>30</td>
<td>A2.5 Identifying the lack of safety culture 914</td>
</tr>
<tr>
<td>31</td>
<td>A2.6 Improvement of safety culture 915</td>
</tr>
<tr>
<td>32</td>
<td>A2.7 Conclusion 918</td>
</tr>
<tr>
<td>33</td>
<td>A2.8 References 918</td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Appendix 3: Nuclear installation safety: International Atomic Energy Agency (IAEA) training programmes, materials and resources 919</td>
</tr>
<tr>
<td>38</td>
<td>M. J. MORACHO RAMIREZ, International Atomic Energy Agency (IAEA), Austria</td>
</tr>
<tr>
<td>39</td>
<td>A3.1 Background and introduction 919</td>
</tr>
<tr>
<td>40</td>
<td>A3.2 Building competence and effectiveness of training 921</td>
</tr>
<tr>
<td>41</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>
Contents xv

A3.3 Training of leaders for safety, emerging regulators 923 1
A3.4 Challenges for building sustainable competence systems 923 2
A3.5 IAEA training materials and related resources 925 3
A3.6 IAEA training resources on the Web 925 4
A3.7 The IAEA interdepartmental group on training and Web-based training resources 927 5
A3.8 Regional cooperation, knowledge networks and harmonized approach to training management 927 6
A3.9 Conclusions and recommendations for efficient and sustainable training systems to build competence 928 7
A3.10 Acknowledgements 929 11
A3.11 References 929 12
A3.12 List of abbreviations and acronyms 930 13
A3.13 Annex: Four quadrants competencies model based on TECDOC 1254 and SARCoN guidelines 930 14
A3.14 Acknowledgements 929 11
A3.15 References 929 12
A3.16 List of abbreviations and acronyms 930 13
A3.17 Annex: Four quadrants competencies model based on TECDOC 1254 and SARCoN guidelines 930 14
A3.18 Appendix 4: Simulator training for nuclear power plant control room personnel 934 17
 E. LINDAUER, retired, Germany
A4.1 Reasons for simulator training 934 20
A4.2 Deciding who should be trained in full-scope simulators 936 21
A4.3 Operating scenarios for training 938 22
A4.4 Competencies to be acquired 938 23
A4.5 Defining good simulator training 940 24
A4.6 Requirements for simulators 945 25
A4.7 Other applications for training simulators 947 26
A4.8 Conclusion 948 27
A4.9 Sources of further information and advice 949 28
A4.10 Conclusion 948 27
A4.11 Sources of further information and advice 949 28
A5.1 Introduction 950 31
A5.2 Programme goals and outcomes 952 32
A5.3 Programme implementation 954 33
A5.4 Current activities 957 34
A5.5 Interim results 969 35
A5.6 Future trends 970 36
A5.7 References 970 37
Index 973 42

© Woodhead Publishing Limited, 2011
Contributor contact details

(* = main contact)

Foreword
J. B. Ritch
World Nuclear Association
Carlton House
22a St James’s Square
London SW1Y 4AH
UK
E-mail: wna@world-nuclear.org

Editor and Chapters 1, 8 and 18
A. Alonso
Nuclear Engineering Department
Universidad Politécnica de Madrid
José Gutierrez Abascal 2
28006 Madrid
Spain
E-mail: agustin.alonso@nexus5.com

Chapter 2 and Appendix 2
A. Carnino
Consultant in Safety, Management of Safety, Safety Culture and Security
73 Impasse de la Sarriette
83230 Bormes les Mimosas
France
E-mail: annick.carnino1@orange.fr

Chapter 3
D. F. Torgerson
Atomic Energy of Canada Ltd (AECL)
Chalk River Laboratories
Chalk River
Ontario
K0J 1J0
Canada
E-mail: torgersond@aecl.ca

Chapter 4
G. Caruso
Regulatory Activities Section
Division of Nuclear Installation Safety
Department of Nuclear Safety and Security
International Atomic Energy Agency
Vienna
Austria
E-mail: G.Caruso@iaea.org

© Woodhead Publishing Limited, 2011
Chapter 5

J. Moares
Independent Consultant
4 Billings Way
Cheltenham
Gloucestershire GL50 2RD
UK
E-mail: john.moares@btinternet.com

Chapter 6

F. J. Sánchez
Safety, Operation and Training Direction Tecnam Avda. Montes de Oca, 1 San Sebastián de los Reyes 28703 Madrid Spain E-mail: fsanchez@tecnatom.es

Chapter 7

S. K. Sharma
Atomic Energy Regulatory Board of India 301/1, Sagar Darshan Plot-38, Sector-18 Nerul (West) Navi Mumbai 400706 India E-mail: sksharma.aerb@gmail.com

Chapter 9

S. Bilbao y León*
Department of Mechanical and Nuclear Engineering Virginia Commonwealth University 401 W. Main Street PO Box 843015 Richmond, VA 23284-3015 USA E-mail: S Bilbao@vcu.edu

J. H. Choi, J. Cleveland, I. Khamis, A. Rao, A. Stanculescu, H. Subki and B. Tyobeka Nuclear Power Technology Development Section Department of Nuclear Energy International Atomic Energy Agency Wagramer Strasse 5 PO Box 100 1400 Vienna Austria E-mail: I.Khamis@iaea.org

Chapter 10

D. A. Meneley
Atomic Energy of Canada Ltd University of Ontario Institute of Technology 2330 Fire Route 26B Lakefield Ontario K0L 2H0 Canada E-mail: mmeneley@sympatico.ca
xx Contributor contact details

Chapter 17
I. Salter*, P. Robinson, M. Freeman and J. Jagasia
Burges Salmon LLP
One Glass Wharf
Bristol BS2 0ZX
UK
E-mail: ian.salter@burges-salmon.com; patrick.robinson@burges-salmon.com; jay.jagasia@burges-salmon.com; Michael.freeman@burges-salmon.com

Chapter 19
A. González
Empresarios Agrupados, A.I.E.
Calle Magallanes 3
28015 Madrid
Spain
E-mail: agonzalez@empre.es

Chapter 20
A. Alonso*
Nuclear Engineering Department
Universidad Politécnica de Madrid
José Gutiérrez Abascal 2
28006 Madrid
Spain
E-mail: agustin.alonso@nexus5.com

S. K. Sharma
Atomic Energy Regulatory Board of India
301/1, Sagar Darshan
Plot-38, Sector-18
Nerul (West)
Navi Mumbai 400706
India
E-mail: sksharma.aerb@gmail.com

D. F. Torgerson
Atomic Energy of Canada Ltd (AECL)
Chalk River Laboratories
Chalk River
Ontario
K0J 1J0
Canada
E-mail: torgersond@aecl.ca

Chapter 21
R. Gasca
Asociación Nuclear Ascó – Vandellós II, a.i.e.
43890 L’Hospitalet de l’Infant (Tarragona)
Spain
E-mail: rgasca@anacnv.com

Chapter 22
E. Grauf
se-engineering GmbH
Panoramastrasse 7
74388 Talheim
Germany
E-mail: safe@se-grauf.de

Chapter 23
M. Lipár
Operational Safety Section
Department of Nuclear Safety and Security
International Atomic Energy Agency
Wagramer Strasse 5
PO Box 100
1400 Vienna
Austria
E-mail: M.Lipar@iaea.org
Chapter 24
T. S. LaGuardia
LaGuardia & Associates, LLC
38 Pell Mell Drive
Bethel, CT 06801
USA
E-mail: tsl8@aol.com

Appendix 1
W. E. A. Wilson
Burges Salmon LLP
One Glass Wharf
Bristol BS2 0ZX
UK
E-mail: William.Wilson@burges-
salmon.com

Appendix 3
M. J. Moracho Ramirez
Division of Nuclear Installation
Safety (NSNI)
International Atomic Energy
Agency
Vienna
Austria
E-mail: mariamoracho@aim.com

Appendix 4
E. Lindauer
Dieselstrasse 9
51103 Köln
Germany
E-mail: erwin.lindauer@freenet.de

Appendix 5
J. Reig
Nuclear Safety
OECD/Nuclear Energy Agency
Le Seine Saint-Germain
12, boulevard des Îles
92130 Issy-les-Moulineaux
France
E-mail: javier.reig@oecd.org

© Woodhead Publishing Limited, 2011
Woodhead Publishing Series in Energy

1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
 Eric Jeffs

2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
 Edited by Kenneth L. Nash and Gregg J. Lumetta

3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
 Edited by K.W. Waldron

4 Understanding and mitigating ageing in nuclear power plants:
 Materials and operational aspects of plant life management (PLiM)
 Edited by Philip G. Tipping

5 Advanced power plant materials, design and technology
 Edited by Dermot Roddy

6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
 Edited by J.K. Kaldellis

7 Biodiesel science and technology: From soil to oil
 Jan C.J. Bart, Natale Palmeri and Stefano Cavallaro

8 Developments and innovation in carbon dioxide (CO₂) capture and storage technology Volume 1: Carbon dioxide (CO₂) capture, transport and industrial applications
 Edited by M. Mercedes Maroto-Valer

9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
 Edited by Joonhong Ahn and Michael J. Apted

© Woodhead Publishing Limited, 2011
10 Wind energy systems: Optimising design and construction for safe and reliable operation
 Edited by John D. Sørensen and Jens N. Sørensen

11 Solid oxide fuel cell technology: Principles, performance and operations
 Kevin Huang and John Bannister Goodenough

12 Handbook of advanced radioactive waste conditioning technologies
 Edited by Michael I. Ojovan

13 Nuclear safety systems
 Edited by Dan Gabriel Cacuci

14 Materials for energy efficiency and thermal comfort in buildings
 Edited by Matthew R. Hall

15 Handbook of biofuels production: Processes and technologies
 Edited by Rafael Luque, Juan Campelo and James Clark

16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
 Edited by M. Mercedes Maroto-Valer

17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
 Edited by Ligang Zheng

18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
 Edited by Robert Beith

19 Advances in clean hydrocarbon fuel processing: Science and technology
 Edited by M. Rashid Khan

20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
 Edited by Peter Jansohn

21 Concentrating solar power (CSP) technology: Developments and applications
 Edited by Keith Lovegrove and Wes Stein

22 Nuclear corrosion science and engineering
 Edited by Damien Féron

23 Power plant life management and performance improvement
 Edited by John E. Oakey

© Woodhead Publishing Limited, 2011
Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso Santos
Electricity transmission, distribution and storage systems
Edited by Ziad Melhem

Advances in biodiesel preparation: Second generation processes and technologies
Edited by Rafael Luque and Juan Antonio Melero

Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl

Ultra-supercritical coal power plant: Materials, technologies and optimisation
Edited by Dongke Zhang

Radionuclide behaviour in the natural environment: Science, impacts and lessons for the nuclear industry
Edited by Horst Geckeis and Christophe Poinssot

Calcium and chemical looping technology for power generation and carbon dioxide (CO₂) capture: Solid oxygen- and CO₂-carriers
P. Fennell and E.J. Anthony

Materials ageing and degradation in light water reactors: Mechanisms, modelling and mitigation
Edited by K.L. Murty

Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi, Rob Wallach and Susan Jackson

Biolubricants: Science and technology
Jan C.J. Bart, Emanuele Gucciardi and Stefano Cavallaro

Wind turbine blade design and materials: Improving reliability, cost and performance
Edited by Povl Brøndsted and Rogier Nijssen

Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen

Probabilistic methods of strength reliability and their application for optimum nuclear power plant life management (PLiM)
Gennadii V. Arkadov, Alexander F. Getman and Anderi N. Rodionov

Coal utilization in industry: Towards cleaner production
Edited by D.G. Osborne

Coal power plant materials and life assessment: Developments and applications
Edited by Ahmed Shibli

© Woodhead Publishing Limited, 2011
More than three decades ago, an American movie called ‘The China Syndrome’ popularized the image of a nuclear power plant as a catastrophe waiting to happen. The actor Jack Lemmon won an Academy Award as a whistle-blower saving the world from a dangerous technology controlled by a gang of moral and environmental thugs. Unfortunately, time and events have done too little to diminish that dire impression in the public mind.

Since then, our world has become increasingly aware of another China Syndrome that is both more real and far more serious. It can be seen in a satellite photo of the world’s most populous nation and its burgeoning economy under a vast cloud of pollution. That cloud and others like it – a symbol of the consequences of world economic development today – signify both severe health damage to citizens below and a dangerously thickening canopy of greenhouse gases above. These clouds now hover over our planet’s future.

The world’s response to this menace has been slow. But in the past decade, we have seen the beginnings of action as dozens of nations, representing much of humankind, reviewed their policies and came inexorably to the same conclusion. For reasons of energy independence, human health and environmental responsibility, they determined that nuclear power must play a central role in their national energy strategies for the twenty-first century.

The calamity at Fukushima has compelled people everywhere to ask whether these policies should now be revised. But in fact Fukushima has been educational, primarily in reinforcing truths we knew already – about nuclear technology and public perceptions.

1. *Inevitability of nuclear events*. First and most elementally, nuclear accidents happen. This is not a trivial observation. Even as we strive for impeccable management of nuclear facilities, we can never have confidence that we will succeed absolutely. Nor can we expect the public to believe that we have. We must concede that human beings make
mistakes, individually and collectively. This in itself is not debilitating. Our problem lies in how this reality is construed.

Right now, most people continue to assume that nuclear power carries a low probability of a highly lethal event. In fact, Fukushima itself offers strong evidence to the contrary, but few in the public have perceived it thus. The future of nuclear energy will rest on fragile foundations as long as the perception of heavy risk to human well-being remains. Those who believe in nuclear power must accept the burden of explaining to the public that even worst-case nuclear events are not only extremely low in probability but also increasingly small in consequence as nuclear technology continues to advance. This is true and must be presented believably.

2. The universal necessity of reliable back-up cooling. Second, every nuclear reactor requires reliable post-shutdown cooling. Some advanced reactor designs will soon accomplish this using the natural physical principle of convection. But for the world’s current reactor fleet, post-shut-down heat removal depends on external power. Back-up cooling systems are a critical non-nuclear aspect of nuclear technology, and Fukushima has imprinted on us indelibly how essential this function is to the safety and future of nuclear power. For those who are the custodians of nuclear power – which includes both regulators and operators in dozens of nations – the commitment to ensuring its reliability of this function, in every reactor everywhere, must be absolute.

3. The essential safety of nuclear power. Third, despite widespread impressions to the contrary, Fukushima underscores the essential safety of nuclear power. This was truly a worst-case nuclear event. Yet, even with substantial releases, so precautionary are Japan’s safety standards and evacuation policies that it is still reasonable to predict that not a single radiation fatality will result from Fukushima, even amidst a natural disaster that has claimed some 25,000 lives. This is not a statement of complacency or indifference, but of simple fact.

Nor should this come as a surprise. If Fukushima were to produce a radiation fatality, it would be the first ever to occur in the nuclear power history of Japan, America or France – nations that account for half the world’s power reactors. Indeed, apart from Chernobyl, the World Nuclear Authority (WNA) is not aware of a single radiation fatality that has occurred in the entire history of nuclear power, spanning some 14,500 reactor-years of nuclear electricity generation in some 30 nations worldwide. This impressive truth remains colossally unappreciated by the public and the media.

Meanwhile, we know that each year many thousands of people continue to die worldwide either in the mining of fossil fuels or from the health consequences of fossil combustion. Viewed in that context of real,
large-scale and ongoing lethality, what is now commonly called the ‘nuclear disaster’ at Fukushima invites a less hyperbolic description.

4. Media frenzy is today’s norm. A fourth truth from Fukushima is that present-day media coverage is more inclined to frenzy than to balance in any event involving nuclear energy. In today’s context, the terms ‘meltdown’ and ‘radiation leak’ are too titillating to resist, and we must expect this tendency to persist so long as we have failed to demythologize nuclear energy. Achieving that would mean creating much wider public understanding of radiation as a ubiquitous natural phenomenon and of the limited consequences of radioactive release likely to result even from worst-case events.

5. Weak support where nuclear is an ideological issue. A fifth reality underscored by Fukushima is the bizarre weakness of support for nuclear power in a few technologically advanced European countries. As Europe’s leading economic power, Germany is particularly remarkable. Acting in the name of environmentalism, Germans will now begin to burn more lignite, coal and gas, while reverting when necessary to importing nuclear power.

6. Solidity of support in many key nations. A sixth truth is the solidity of policy support for nuclear power in most countries now using it. This is especially true in those countries planning major programmes of nuclear new-build, led by China, India, Russia, Britain, South Africa and South Korea. In other major nations too, including Brazil, France, Poland, Ukraine, Canada and the USA, we see little evidence of lost momentum.

7. Thinness of public understanding. A seventh and countervailing reality is that public understanding of nuclear power in many countries remains thin and readily susceptible to misimpression. Where we see constancy in policy support for nuclear power, it relies mainly on consensus among policymakers and on nuclear power not becoming, in the country’s politics, an ideological litmus test.

Nonetheless, Fukushima has plainly cast a far-reaching negative effect. In nations around the world, the common impression that Japan’s natural catastrophe was compounded by a manmade disaster has weakened public confidence in nuclear power. Once again we have learned that ‘radiation’ ranks high as one of the most potent and evocative words in any language.

8. Continuing power of the Chernobyl myth. A closely related truth, vividly underscored by media coverage of Fukushima, is that the myth of Chernobyl retains a powerful hold on public consciousness and remains a main journalistic reference point with respect to the perceived dangers of nuclear power. I refer to the ‘myth’ of Chernobyl because so few people understand that the Chernobyl reactor that exploded and caught
in 1986 bears little relevance to any reactor now operating and because the real, scientifically analysed consequences of Chernobyl differ so drastically from the public impression.

In truth, there is a strong scientific consensus that the radiation fatalities from Chernobyl are strictly limited – to several dozen ‘liquidators’ severely irradiated while fighting the reactor fire and to a small number of members of the public in the Chernobyl vicinity, statistically thought to be some 16 in number, who should be assumed to have died from thyroid cancer caused by radioactive iodine emitted by the burning reactor.

As many Chernobyl authorities will attest, the allegation of any other radiation fatalities depends solely on the so-called ‘collective dose’ hypothesis, which is scientifically unfounded and also defies common sense. Those able and willing to say so include the chairman of the UN Scientific Committee on the Effects of Atomic Radiation and the head of the Chernobyl Tissue Bank in London. But little of this is commonly understood.

Also misunderstood are the ratings on the International Nuclear Event Scale. When Fukushima reached level 7 as a ‘Serious Accident’ on the INES Scale – a number hitherto assigned only to Chernobyl – these misunderstandings coalesced, and millions around the world concluded they were witnessing a human catastrophe of immense proportions.

9. Nuclear economics remain paramount. A final truth, underscored as we contemplate the potential worldwide policy and regulatory response to Fukushima, is that the economics of nuclear power remain crucial to its future. It is well known that, compared to other major power technologies, nuclear is expensive to build and cheap to operate. In the past decade, even amidst growing confidence in nuclear power’s worldwide future, we have seen the industry struggle to limit capital costs while venturing to build the next generation of reactors. In this context, it is crucially important that regulatory actions taken in response to Fukushima have demonstrable benefit arising from any increased costs.

Against this backdrop, Professor Agustín Alonso’s book provides a superb demonstration of the sophistication of today’s nuclear profession and the extensive infrastructure of standards and regulation that now surrounds the use of this invaluable technology. The 36 authors who have contributed to this work reflect the wide geographical reach of today’s nuclear profession and an impressive range of expertise.

This excellent book will prove valuable in the training of engineers and administrators engaged in nuclear development, and will serve also as an authoritative reference for experts and decision makers in govern-
ment, regulatory bodies, educational institutions, and the nuclear industry itself.

The calamity at Fukushima has shaken the confidence of many people in nuclear power. But in truth this tragic event has done nothing to alter the stark realities that led so many different nations in recent years to a common nuclear path.

- Global population will continue its explosive growth – from 3 billion in 1960 to almost 7 billion today, and then upward towards 9 billion by 2050.
- World electricity demand will continue to grow even faster, tripling by 2050.
- Earth-systems science will continue to warn that we must cut carbon emissions by 80% – or risk radical changes in the Earth’s climate posing a threat to all civilization.
- It will continue to be true that our world can achieve a clean-energy revolution only with a vastly expanded use of nuclear power.

These realities remain as momentous and fundamental as they were before Japan’s historic natural disaster. Thus, the custodians of nuclear power hold a duty that remains unaltered: to do all possible to enable this immensely valuable technology to play its central and necessary global role. Professor Agustín Alonso’s book is a notable contribution to this proud and invaluable vocation.